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Abstract. In many of today’s applications we have to cope with multi-
dimensional data streams containing dimensions which are not relevant
to a particular stream mining task. These irrelevant dimensions hinder
knowledge discovery as they lead to noisy distributions in the full di-
mensional space, while knowledge is hidden in some sets of dependent
dimensions. This dependence of dimensions may change over time and
poses a major open challenge to stream mining.
In this work, we focus on dependent dimensions having a high contrast,
i.e. they show a clear separation between outliers and clustered objects.
We present HCP-StreamMiner, a method for selecting high-contrast pro-
jections in multi-dimensional streams. Our quality measure (the contrast)
of each projection is statistically determined by comparing the data dis-
tribution in a set of dimensions to their marginal distributions. We pro-
pose a technique for computing the score out of stream data summaries
and a procedure for progressively tracking interesting subspaces. Our
method was tested on both synthetic and real world data, and proved to
be effective in detecting and tracking high contrast subspaces.

1 Introduction

Stream mining has seen an increased interest from researchers in the last decade.
This interest can be attributed to at least two key factors: the prevalence of
stream data and the challenges in its processing. Applications that produce
stream data range from patient monitoring in medicine, click streams in e-
commerce, up to energy surveillance with smart meters. What makes stream
processing much more challenging than static data processing is the speed at
which data is produced, the way in which stream data changes over time, the
limited computational resources for processing, and the complexity of today’s
data streams. We observe multi-dimensional streams to be such a complex data
type where users are overwhelmed by many concurrent measurements. While
some dimensions seem to be relevant at some time, this might change, and other
sets of dimensions may become relevant. It is hard to capture this change by
manual exploration of the exponential set of possible projections. Hence, auto-
matic detection of subspace projections (i.e. sets of relevant dimensions), is an
important issue for the instant analysis of multi-dimensional data streams. Such
a subspace search can assist many data mining tasks.



As a use case for our subspace search, we focus on outlier detection. Outlier
mining is an emerging research field for data streams [1–5]. As all of these ex-
isting techniques utilize the entire data space (all given dimensions), they fail in
streams with many dimensions due to the well-known curse of dimensionality [6].
We tackle this challenge by subspace search and select the relevant projections
for stream outlier mining. However, our technique is by far more general and
could also be used for stream clustering or directly for user-driven exploration
of relevant projections. In all of these scenarios, one requires local projections
that reveal the hidden patterns (clusters, outliers, etc.) in a subset of the dimen-
sions. We aim at subspaces with a clear separation between clusters and outliers.
This separation, or contrast, is what we are looking for when selecting relevant
projections. However, there are several challenges that need to be addressed to
select high contrast projections in a data stream, including instant selection of
projections and the constant refinement of selected projections over time.
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Fig. 1. Toy example for high contrast projections considering two stream snapshots

Monitoring and selecting relevant projections is demanding, as keeping track
of every projection would require a daunting amount of memory, computational
power and time. A core issue is that it requires an efficient contrast measure to
keep track of relevant projections throughout the data stream. The projections
of interest are those with both, dense and empty regions interleaved, i.e., they
show a high contrast. Figure 1 shows an example of a data stream with six
dimensions (lower half), denoted as A1, ..., A6, and the distribution of the data
(upper half) in selected projections. As illustrated in our toy example, high
contrast projections such as {A1, A2} are relevant for outlier detection in the
first snapshot of the stream. This situation of high contrast changes over time,
and {A1, A2} becomes irrelevant due to scattered data measurements in these
two dimensions. A new projection becomes relevant and shows high contrast
between clusters and outliers in {A4, A5}. To assess the relevance of projections,



we aim at a comparison of data distributions in different projections. As depicted
for the low, medium, and high contrast subspaces, random distributions hinder
the detection of hidden outliers, and outlier analysis should leave them aside.
Measuring the contrast based on the data distribution is a major challenge for
stream data. For our analysis it is important to summarize the data stream
efficiently in order to correctly assess a contrast measure. Another open challenge
for our selection is the changes over time. As illustrated in our example we have
to keep track of changing projections.

In this work we present HCP-StreamMiner, a method for detecting high
contrast subspace projections in stream data. The algorithm keeps a ranked list
of subspaces that are continuously updated based on the new arriving data. The
contrast of each subspace is statistically determined by comparisons of marginal
density distribution functions and conditional density distribution functions. The
two distributions are computed out of a stream summary. It is important to base
on such summaries in order to efficiently asses our contrast measure. In order
to address the issue of change in the data stream, we assess a given subspace
based on the contrast, taking both old and new data, with a temporal decay,
into account. Overall, we present the first method for subspace search on multi-
dimensional data streams. It transfers the statistical selection of high contrast
subspaces [7] that has been developed for static databases into the dynamic
world of data streams.

2 Related Work

A number of techniques has been developed for dynamic stream processing and
for outlier mining on data streams in particular. We review some approaches
out of these two paradigms, in contrast to recent developments in static multi-
dimensional databases.

Stream summarization aims at the efficient representation of stream history,
with limited amount of memory and fast throughput rates. Histograms have
been used to summarize data streams [8, 9]. Multi-dimensional data has been
summarized into micro-clusters or cluster features [10], which store the linear
sum and the sum of squared values as a data summary. A sketch of the data
stream has been proposed for a summary that is incrementally updated with
every multi-dimensional data object on the stream [11]. Furthermore, quad trees
are proposed for efficient approximations of data distributions [12]. All of these
techniques are limited to efficient summaries and do not address high contrast
projections. They assist in efficient data access but do not provide any knowledge
about the data. Users cannot derive the relevant projections neither for data
analysis nor for interactive exploration with the stream.

Stream outlier analysis has been proposed recently. Outlier models range
from distance-based outlier detection in data streams [1] to statistical approaches
that measure the deviation of each object based on a model learned [2]. Further-
more, learning of different outlier types in multi-dimensional data streams has
been proposed [3]. Some outlier models have been developed for sensor data [4].
Others focus on varying data rates of data streams using any-time approaches



for outlier detection [5]. In all of these approaches, the focus is on the outlier
models and on the stream data rates. None of these approaches considers pro-
jections of the multi-dimensional data stream. Thus, they might miss outliers
that occur only in a subset of the given dimensions.

Subspace Projections are well-known for static databases. Techniques such
as PCA detect one global projection for the entire database [13]. However, as
a major limitation of PCA and other dimensionality reduction techniques, they
all provide a single projection only. Thus, they miss outliers hidden in different
projections. Subspace outlier mining has tackled this challenge for high dimen-
sional databases [14–16]. All of these methods detect individual projections for
each outlier. As a pre-processing step to such outlier analysis, subspace search
has been proposed. It uses entropy [17], density [18], or statistical approaches [7]
for quality assessment of subspaces. All of these techniques succeed in detecting
local projections for each outlier. However, they rely on multiple passes over the
database and are not suitable for stream data. In this work, we overcome this
issue and propose the first subspace search method for data streams.

3 Open Challenges

We observe several open challenges for stream outlier analysis on multi-dimensional
data streams. In this work, we focus on two of them, addressing the main issues
of instant outlier analysis on multi-dimensional streams:

Challenge 1 Instant Selection of High Contrast Projections

As first challenge, we observe the instant selection, i.e., a one-pass selection
of high contrast projections. Traditional methods for high contrast projections
require multiple passes over the database, which are not feasible for stream
data. Measuring the contrast of arbitrary projections in an online fashion is still
an open challenge. A solution has to distinguish between relatively even distri-
butions in some dimension combinations vs. the high contrast of outliers and
clusters in other dimension combinations. This calls for an online computation
of the contrast measures, only based on concise data summaries derived from
the stream.

Challenge 2 Adaptive Refinement of Projections over Time

A second challenge is the change of high contrast projections over time. Due
to this change, relevant and irrelevant projections need to be adapted. A static
solution for the entire data stream would not be sufficient especially in situations
where data arrives in large quantities and at a high speed. One has to keep track
of data changes and provide an updated list of top ranked subspaces. Refining
the set of selected projections in an incremental fashion is the key challenge for
such an adaptation over time.



4 HCP-StreamMiner

Based on the open challenges presented in the previous section, we present an
algorithm for detecting high contrast projections in streaming environments.
The algorithm takes as input the data arriving in the stream and outputs a
ranked list of high contrast subspaces. This list can be used as input for other
algorithms (e.g., outlier detection in our study) or point users to those subspaces
which they may analyze in more detail with a manual exploration.

4.1 High Contrast Projections

Let us start with some basic notions for our formalization. We model a stream
database DB as an infinite set of time points DB = {t0, t1, t3, . . .}, with each
time point i storing a d-dimensional vector ti ∈ Rd. The full data space is
represented by the dimension set DIM = {D1, . . . , Dd}. A subspace projection
S ⊆ DIM is a subset of this data space. We output a ranking of relevant
subspaces for each time point. The selection and order of this ranking is based
on the contrast function contrast : P(DIM) → R. It provides the contrast of
a subset of the dimensions. Please note that for processing reasons we base on
a window-based computation of the contrast. As processing unit we consider
a window W = {ti, ti+1, . . . , ti+k}, a collection of multiple time points. The
size of the windows is depending on the storage and processing capabilities of
the underlying system. Each window is captured by a stream summarization
technique [10] and all required measures are derived out of this summary. The
required data distribution of each subspace is extracted from projections of the
stream summaries on those particular dimensions. This allows the selection of
subspaces with a one-pass solution based on stream summaries (cf. Section 4.2).

For our contrast function, we rely on a recent definition of contrast on static
databases [7], as the basic notion for our selection and refinement of projections
on data streams. Let us briefly review this contrast definition. A high contrast
projection S ⊆ DIM is a selection of dimensions which shows a data distribution
with a high dependency between the selected dimensions. This dependency leads
to clear clustered structures vs. individual outliers. This contrast is measured
by comparing the Marginal Density Distribution Function (MDF) of a single
dimension, and the Conditional Density Distribution Function (CDF), within a
subregion. For every subspace, random subregions are selected as a conditional
slice of the database. For each of these subregions, a deviation score is calculated,
corresponding to the differences between the MDF and CDF. This comparison is
performed for M random subregions. The overall contrast score of a projection
is calculated as the mean of all deviation values obtained over the M iterations.

contrast(S) ≡ 1

M

M∑
k=1

deviation(MDFDj , CDFsl)

The CDF refers to the conditional distribution in a random slice sl, with |S|−
1 conditions given by [lefti, righti] ∀Di ∈ S\Dj . The MDF is the distribution of
the entire database projected on dimension Dj . The contrast score is computed



from M comparisons of CDFs for randomly selected slices, and the MDF of the
free (i.e. non-conditioned) dimension Dj . For a complete description of the MDF
and CDF computation please refer to [7]. Our HCP-StreamMiner extends this
contrast definition and computes it in a one-pass solution. Therefore, we will
restrict the discussion to the novel stream properties only.

At each time point in the stream, the algorithm uses the data in the newly
arrived data windows to update the stream summary. Out of this summary,
it computes the contrast of S by updating its contrast score contrast(S) to
the new data distribution. Initially, the 2-dimensional subspaces from new data
window are generated and ranked to capture the new trends in subspace contrast.
Additionally, new candidate subspaces are generated from the existing subspaces,
by progressively tracking higher dimensionality subspaces (cf. Section 4.3).

In addition to the number M of random selections, the algorithm takes three
user controlled input parameters: top k, gen k and rand k. The top k parameter
specifies the number of top ranked subspaces that are assessed at each time point.
Since there is a large number of possible dimension combinations, assessing all
subspaces requires to many resources. The top k parameter therefore caps this
effort. Furthermore, the parameters gen k and rand k control the the generation
of new candidate subspaces.

4.2 Subspace Search based on Stream Summaries

The data distribution over the stream is needed to compute the contrast score of
a subspace at a point of time. Summaries of the data need to be built, such that
the data distribution can be approximated accurately. Cluster Features (CF)
are data structures used to summarize data by creating so-called micro-clusters
[10]. A CF is a triple C(CF1x, CF2x, n) with: the number of data points n
summarized by the CF; CF1x and CF2x are two d-dimensional vectors storing
the linear sum of each dimension and the sum of the squares of each data value
in every dimension, respectively.

The total amount of information that a CF needs to store is 2 · d+ 1 values,
regardless of the number of data objects used to create the micro-cluster. CF1x

can be viewed as the centroid of the cluster. Since the total number of parameters
n is known, assuming a Gaussian distribution and also knowing the standard
deviation σ, we can approximate the number of items around the centroid. The
standard deviation can be computed using the following formula:

σ =

√∑n
i=1 x

2
i

n
−
(∑n

i=1 xi
n

)2

⇐⇒ σ =

√
CF2x

n
−
(
CF1x

n

)2

We base our data stream summary on cluster features. Each data window is
summarized by a CF. Additionally, a random stretch area RS in the full data
space is monitored; one RS is constructed for each data window. A RS is a
subregion of the full data space, which adheres to a set of domain constraints.
For every dimension Di two values lefti and righti are randomly selected, such
that lefti < righti; they represent the start- and end-point of the subregion of



Di that is summarized: RS = {(lefti, righti) | lefti < righti ∀ Di ∈ DIM}. We
define NRS as the number of items in the stream that respect all the conditions
(lefti, righti) in RS. Therefore, the summary of the stream consists of a pair
(CF,RS), representing a summary of a particular time point in the stream. A
strong point of using CFs is that they are built incrementally, accessing the data
only once. This is a strong requirement in the data stream environment and
also addresses the first challenge referred to earlier. A list of CFs is stored and
maintained as follows. A queue storing CFs (CFList) is constructed at launch
time, having a size in line with the memory capabilities of the system. Since
the CF queue has a fixed size, whenever a new CF must be constructed, and
the queue is full, the oldest CF will be deleted. The queue of RSs (RSList) is
created and updated in a similar manner. We thus maintain a recent history of
past windows.

Using the stream summaries, the subspace ranking is computed based on the
relevance score, which quantifies the degree of contrast in a subspace (cf. Algo-
rithm 1). The ComputeRanking procedure computes the new ranking for each
subspace and updates the rankings. In each iteration, the algorithm first creates
a so-called test space TS, by selecting a random dimension Dj from within the
current subspace and removing it (Line 5). A slice sl is randomly selected in TS
(Line 6), and its CDF is calculated (Line 7). The slice must be selected such
that the boundaries of sl are withing the boundaries of at least one element
in RSList. In order to compute the MDF, the CF summaries are projected on
dimension Dj . For the CDF calculation, one has to query the RSList for those
RS that overlap sl and get the number of objects in the overlapping regions.
Based on the width of sl, the corresponding number of objects within the lefti
and righti endpoints of the selected sl can be approximated.

Algorithm 1 Compute Ranking

1: procedure ComputeRanking(subspace list,M)
2: for all subspaces S in subspace list do
3: contrast← 0;
4: for k ← 1 . . .M do
5: TS ← S \Dj (Dj randomly selected);
6: select random slice sl from TS
7: compute CDF and MDF by CFList and RSList projections
8: run k = deviation(MDFDj , CDFsl)
9: contrast← contrast + run k

10: end for
11: contrast← 1

M
· contrast

12: UpdateRankingList(S, contrast);
13: end for
14: end procedure

For a particular subspace, we consider the dissimilarity between its MDF
and CDF the percentage of the total area represented by their difference, with



respect to the MDF. Larger dissimilarities will produce higher contrast scores:

contrast =
1

M

M∑
k=1

∫ slmax

slmin

MDFDj (x)− CDFsl(x) dx

Here slmin and slmax are the multi-dimensional boundaries of the random
slice. The values calculated at each iteration are summed up, and the final con-
trast score for subspace S is returned as the mean of the individual scores. To
address the changing nature of the stream and to emphasize the current one,
the new and old values of the final contrast score are combined using a decay
function.

4.3 Tracking Relevant Subspaces over Time

Efficient generation of new subspace candidates is important. As noted in our
challenges, the data distribution within the stream might change over time. New
relevant subspaces might appear in the stream. If our algorithm does not assign
top rank to these subspaces, important information might get lost. A further
issue is that a superspace of a known high contrast subspace might yield a
higher contrast score. This superspace would be more interesting and valuable.
Traditional methods for generating patterns of higher dimensionality rely on
Apriori-like algorithms to do so. This bottom-up approach conflicts with the
challenge of instantly selecting high contrast projections. Thus, our algorithm
generates new subspaces in two phases: probability-based generation and random
generation of candidate subspaces. We will discuss this process in the following.

The algorithm implements a progressive tracking of subspaces, in the sense
that higher-dimensional subspaces are always generated and assessed later. With
each iteration, the subspaces grow in dimensionality. The new subspaces are
created by adding an additional dimension. Since there are many permutations
possible, considering all higher-dimensional subspaces as candidates would result
in a long candidate list. Processing such a list would require a large amount of
time and resources, rendering the algorithm impractical for stream processing.
For this reason we propose a so-called dimension selection function (DSF ) which
selects and returns the dimensions with a high probability of being part of a
high contrast subspace. Let DIM denote the set of dimensions available, and S
the set of the dimensions not contained in S: S = DIM \ S. The dimensions
used to create a new higher-dimensional subspace NS are generated based on
the existing subspace and the most promising dimensions selected by the DSF :
NS = S ∪DSF (S, gen k).

Therefore, gen k parameter specifies the number of dimensions selected by
DSF. Please note that the algorithm does not check all possible subspaces at each
time point, due to the potentially high number of new candidate subspaces. In
contrast to such a complete breadth first search, our algorithm tracks the higher
dimensional subspaces in a best-first search based on DSF. Figure 2 shows how
the relevant subspaces are used as seeds for the generation of new subspaces. The
elements of the set St0

2 of 2-dimensional subspaces generated at time point t0 are
used as seeds for the generation of the set St0

3 of 3-dimensional subspaces, which



Fig. 2. Shifting the subspace dimensionality from a time point to the next.

is analyzed at time point t1. The process is applied to all subspaces at the top
of the ranking list. We have implemented the DSF function as a frequency score
which records the occurrences of the dimensions in the top-ranked subspaces.
The frequency score is updated at each time point in the stream, based on the
current subspace list.

Another set of rand k new subspaces to check is randomly selected by choos-
ing different dimensions. In this stage, we select the dimensions which have rarely
been part of a high-contrast subspace so far. The rationale is that subspaces
which have been less relevant in the past could become relevant in light of the
new data. The final set of new candidate subspaces is given by the seeded and
random candidates selected by our algorithm, which are then assessed by our
contrast measure. Overall, this processing selects novel projections and refines
the previously selected ones. We expect it to keep track of changes and to adapt
to high-contrast projections in the data stream. We evaluate these properties in
the following.

5 Experimental Results

We have conducted experiments on two different types of data: synthetic and
real world data. We evaluated the quality of outlier detection based on synthetic
data and compare our high contrast projections vs. the full dimensional space and
other baseline solutions. Furthermore, we show the applicability of our method
on a real world database.

5.1 Synthetic Data

We have generated multiple synthetic datasets with different dimensionalities
(10, 20 and 30 dimensions). For each dataset we have inserted several high-
contrast projections at random locations within the stream data. Synthetic out-
liers were hidden in the full space and in selected projections. The stream time-
points when these outliers are set to appear have been chosen such that they
materialize just before a subspace becomes relevant, during the time the sub-
space is considered relevant and much after a subspace has become irrelevant. We
measure the accuracy of our method in comparison to several baseline solutions:
(1) without subspace selection (full space), (2) in one-dimensional projections,
(3) random projections, and (4) by using a traditional subspace search approach
(HiCS [7]) which requires the entire stream as a static database. In all cases,



LOF [19] was used as outlier detection method to detect outliers in the selected
subspaces. The overview of results is presented in Table 1. It contains the F1
score (i.e. the harmonic mean of precision and recall) as a quality measure. It
shows that high contrast projections yield better results.

dimensions full space one dim. random subspaces HiCS (static) HCP-StreamMiner

10 0.1905 0.3023 0.2250 0.7152 0.9256
20 0.1647 0.2353 0.1282 0.6887 0.9091
30 0.1205 0.2326 0.1013 0.6887 0.8943

Table 1. F1 score for outlier detection on synthetic data.

Fig. 3. HCP-StreamMiner tracking high contrast subspaces and outliers.

Let us discuss some details why HCP-StreamMiner outperforms the com-
petitors. In Figure 3 we depict a down-scaled version of our synthetic data
stream. Each block (column) represents 25 measurements within the 20 dimen-
sions (rows). The dimensions belonging to the same hidden subspace are coded
with the same color. Some of the hidden outliers are also listed, for demonstra-
tion purposes. In the first highlighted part of the stream, the subspace {A2, A3}
shows a high contrast; the outlier O1 is clearly visible. This is also the case for
O4 in {A6, A14, A15, A20} in the second snapshot of the stream. Such outliers can
only be detected if the correct subspace is selected. They are only detected by
HCP-StreamMiner and missed by other techniques. In contrast to this, accuracy
of static selection (HiCS) is affected by the fact that static implementations do
not take the transient nature of streams into account. A selected subspace will
be kept selected for the entire data stream. This results in the detection of false
positive outliers, and thus, lower F1 scores.



Fig. 4. Tracking high contrast subspaces in real-world data.

5.2 Real-World Data

We used a real world dataset containing energy consumption measurements.
The records contain hourly sensor recordings (in MWh), from multiple building
inside the KIT campus. A total of 62 buildings was selected as dimensions, for a
time span of one year. The data was streamed with 24 objects in a single window
– representing one day. Each object consists of all 62 buildings measured at the
same moment of time. Therefore, each stream object represents the complete set
of energy consumption in a multi-dimensional feature vector.

In Figure 4 we present an excerpt from the tracking of relevant subspaces in
the real-world data. The numbers in the legend represent the building IDs. Each
column corresponds to a calendar week. We observe that some of the selected
subspaces tend to maintain their high contrast throughout the stream ({30, 32},
{55, 54}). However, some of them are considered relevant only in specific time
points. For example, {15, 23} and {17, 19, 18} seem to be relevant only in the
very early and late stage respectively. This real world example illustrates the
change of high contrast subspaces over time. It shows that HCP-StreamMiner is
not restricted to a single projection and finds multiple projections in the stream
by adapting over time.

6 Conclusion and Future Work

In this paper we have presented a new data mining approach for the selection of
high-contrast projections in multi-dimensional streams. The HCP-StreamMiner
algorithm searches for dependent dimensions containing outliers in contrast to
clustered data. The proposed algorithm assesses the contrast of subspaces in a
one-pass solution using cluster features as stream summarization. It outputs a
ranking of the most promising subspaces and updates this ranking incrementally
to keep track of changes in the data distribution. Experiments show that our
approach is able to detect outliers that are hidden in different projections of the
data. Such outliers were not detectable by previous algorithms that search for
outliers in the full dimensional space.

For future work we aim at an interactive exploration based on high contrast
projections. To this end, we would like to integrate user feedback into our sub-
space selection process. Presenting a first rough approximation of high contrast



subspaces might give the user a first impression of dependent dimensions. For
the following stream data, user feedback could be integrated as constraints into
our refinement procedure. Hence, projections could be selected and refined based
on both data distribution and user preferences.
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