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Abstract— Outlier analysis is an important data mining task
that aims to detect unexpected, rare, and suspicious objects.
Qutlier ranking enables enhanced outlier exploration, which
assists the user-driven outlier analysis. It overcomes the binary
detection of outliers vs. regular objects, which is not adequate
for many applications. Traditional outlier ranking techniques
focus on either vector data or on graph structures. However,
many of today’s databases store both, multi dimensional numeric
information and relations between objects in attributed graphs.
An open challenge is how outlier ranking should cope with these
different data types in a unified fashion.

In this work, we propose a first approach for outlier ranking in
subspaces of attributed graphs. We rank graph nodes according
to their degree of deviation in both graph and attribute proper-
ties. We describe novel challenges induced by this combination of
data types and propose subspace analysis as important method
for outlier ranking on attributed graphs. Subspace clustering
provides a selected subset of nodes and its relevant attributes
in which deviation of nodes can be observed. Our graph outlier
ranking (GOutRank) introduces scoring functions based on these
selected subgraphs and subspaces.

In addition to this technical contribution, we provide an
attributed graph extracted from the Amazon marketplace. It
includes a ground truth of real outliers labeled in a user
experiment. In order to enable sustainable and comparable
research results, we publish this database on our website' as
benchmark for future publications. OQur experiments on this
graph demonstrate the potential and the capabilities of outlier
ranking in subspaces of attributed graphs.

I. INTRODUCTION

Outlier analysis is an important data mining task for fraud
detection, network intrusion analysis, anomaly detection in e-
commerce, and many more. In these applications one looks for
highly deviating objects that show-up in contrast to the regular
objects. Outlier ranking techniques score each object based
on its degree of deviation. Hence, they overcome traditional
outlier detection techniques [1], [2], which rely on a binary
decision boundary and a difficult parametrization for this
boundary. Outlier rankings enable a user-driven exploration of
outliers by looking at the most promising objects first. They

'http://www.ipd.kit.edu/“muellere/GOutRank/

allow users to choose the decision boundary between outliers
and regular objects in a flexible way.

In the past, outlier ranking techniques have focused on
homogeneous vector data [3] or graph data [4]. However,
in many of today’s applications, information of both types
is available. For instance, heterogeneous data can be found
on e-commerce marketplaces such as Amazon. Their product
databases store a large number of attributes for each product,
e.g., prices, different rating ratios, product reviews. In addition,
co-purchased products are stored as a graph structure. In this
scenario, exceptional objects correspond to outstanding, fake,
suspicious, or overpriced products. Not all of these outliers
can be detected by a traditional outlier analysis restricted
to attribute values or to graph structures only. For example,
overpriced products might appear quite regular if one looks
at the overall price distribution of the database. However, if
one combines both price and co-purchases one might reveal
its high deviation in price w.r.t. to this local subgroup of co-
purchased products.

Our main hypothesis is that such complex outliers can only
be detected by a combination of all available information.
To this end, outlier mining techniques for heterogeneous
databases have to be developed. They have to cope with in-
formation on relations between products, but also with a large
number of attributes. Out of this large set of heterogeneous
data, outlier ranking techniques have to automatically detect
relevant data: (1) subgraphs as the relevant graph context of
an outlier and (2) subspaces as the relevant attribute set in
which an outlier is deviating. This is required as complex
outliers deviate from their local context. For the attribute
space, deviation might not be visible if one considers irrelevant
attributes, e.g., randomly distributed attributes. Exceptional
object deviation is also not recognized if one considers all
given attributes simultaneously. This is due to the curse of
dimensionality [5], as more and more attributes hinder the
detection of outliers. Overall, outlier ranking has to measure
the deviation of objects w.r.t. a subgroup of the data objects
and a subset of the attributes. In this work, we consider
outlier ranking based on this idea to tackle open challenges in
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heterogeneous databases. We rank outlier nodes that are highly
deviating from their local context in the attributed graph.

Let us illustrate this in a real world example. Figure 1(a)
shows a part of the Amazon co-purchase network. In par-
ticular, we have selected Disney DVD products, which have
been reviewed by a group of high school students in a user
experiment at our university. Note that we also use this
database (with the given ground truth of outliers) for our
evaluation in Section IV. Product O; is one of the outliers,
showing up due to its high price in attributes “price offered
by private sellers” and “price for used products”. This object
shows high deviation w.r.t. these prices compared to its co-
purchased products.

However, traditional outlier mining techniques can not de-
tect this deviation. If we consider the graph structure only,
the product is densely connected to other products. Based on
the graph structure it seems to be regular. If we take only
the attributes into account (cf. product prices in Fig. 1(b)),
we observe many objects with high prices for new articles
offered by private sellers and high prices for used articles.
This seems to be quite regular over all products. Thus, graph
structure or attributes alone can not reveal the deviation of
object O;. Nevertheless, O; is highly deviating in the densely
connected group of Disney Read-Along products. All products
of this subgraph have highly similar attribute values w.r.t. both
prices, except for O;. Note that this is only the case for this
subspace. Other subsets of the attributes (e.g., Sales Rank and
Reviews) form a very sparse subspace and do not indicate any
high deviation of O;. Overall, one can claim O; to be a true
outlier w.r.t. to the Disney Read-Along products and the price
attributes.

With this work we focus on the detection of such outliers
that deviate w.r.t. a subgraph of highly connected nodes. The
individual outlier shows high similarity to these nodes in
the graph structure, but there exists a selection of attributes
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(b) Different subspaces of the given attributes

An outlier example in a subgraph of the Amazon co-purchased network

in which it deviates. We call this selection of attributes a
relevant subspace. For the automatic selection of subgraphs
and subspaces we rely on recent subspace analysis and graph
clustering techniques. However, it is still unclear how to score
individual objects based on these clusters.

In the following sections we will highlight the open is-
sues with existing approaches (Section II), present the main
challenges (Section III-B), define three scoring functions (Sec-
tion III-C), present the Amazon co-purchase network as bench-
mark data, and demonstrate the potential and the capabilities
of our approach on this real world database (Section IV).
Finally we conclude and discuss several open questions for
future work in this area (Section V and Section VI).

II. RELATED WORK

We review existing approaches according to their data
types. We discuss outlier mining in (1) vector data, (2) graph
structures, and (3) combinations of both. We will highlight the
emerging developments of outlier mining in combined vector
data and graph structure, and derive the open challenges not
yet addressed in literature.

Outlier Mining in Vector Data

Traditional outlier mining has focused on vector data [3].
Well known approaches have proposed outlier rankings based
on density scores [6], [7]. These scores quantify the deviation
of each object w.r.t. the local neighborhood of the object
in the vector space. While traditional techniques are not
able to detect objects that are outliers in a subset of the
given attributes, recent development focuses on individual
projections for each object [8], [9], [10], [11], [12], [13], [14].
They rank objects based on the selection of relevant subsets
of the attributes, and tackle the curse of dimensionality for
outlier ranking. However, they focus on vector data only
and do not address relations between objects given in graph



databases. We base our work on OutRank [10], [14] and
extend its idea to both graph and vector data.

Anomalous Nodes in Graph Structures

In this work, we focus on outlier nodes and we do not
consider anomalous edges, irregular subgraphs, and other
suspicious structural anomalies [15], [16], [17]. A recent
technique [18] uses the node neighborhood and its power-law
characteristics to compute the outlierness score of each node.
Furthermore, graph clustering algorithms [19] detect outliers
as a byproduct of clustering. They detect sets of highly
connected nodes as clusters and output the residual set of
sparsely connected nodes as outliers. All these approaches
succeed in the detection of outlier nodes based on the graph
structure. However, they ignore additional information at
each node such as numeric feature vectors. All of these graph
mining techniques miss objects which deviate w.r.t. these
node attributes.

Mining Graphs with Node Attributes

An emerging research field considers both graph and vector
data. A first variant of graph clustering combines node at-
tributes and graph structure to obtain better clustering results
[20]. Its basic idea is to convert attribute values into graph
nodes. However, it is limited to discrete attribute values, and
it does not consider the selection of relevant attributes. More
recent techniques have focused on graph clustering w.r.t. a
selection of node attributes [21], [22], [23]. They address the
selection of relevant attributes on the graph cluster level. In
this work, we exploit the potential of these methods, which
have not been designed for outlier analysis, for our graph
outlier ranking. Regarding outlier mining, the most related
algorithm [24] aims to detect outlier nodes that deviate from
communities (e.g., in social networks). It combines informa-
tion from the graph structure and the full dimensional space
of the node attributes. Thus, this approach is hindered by the
curse of dimensionality. In addition, it does not focus on the
ranking of objects according to their degree of deviation.

III. GOUTRANK

Our graph outlier ranking method (GOutRank) aims to
detect anomalous nodes in attributed graphs. It generalizes our
previous outlier ranking method OutRank [10], [14], which has
focused on high dimensional vector data without considering
graph structures. Both techniques share the idea of computing
a subspace clustering as pre-processing to the outlier ranking.
As a general framework they can use any subspace cluster in-
stantiation and improve with this emerging research area [25],
[26], [27]. In addition, GOutRank exploits the hidden potential
of graph clustering and its symbiosis with subspace analysis.
GOutRank has been designed for complex outliers, which
deviate only w.r.t. a local subgraph and a subset of relevant
attributes. Thus, it tackles the challenges with outliers hidden
in attributed graphs. GOutRank, detects outliers that can not be
detected by traditional techniques. Our analysis on the Ama-

zon co-purchase network will demonstrate this enhancement.
Furthermore, we highlight future research potential for more
enhanced scoring functions. Overall, GOutRank is the first
solution to outlier ranking in subspaces of attributed graphs.
However, it is only a first step with several open challenges
for future research.

A. Basic Notions

The general aim of GOutRank is to provide a sorting of all
the objects for the following database definition:

Definition 1: Attributed Graph Database
The database consists of a graph structure (V, E') and attribute
information A. It is characterized as follows:
(1) Each object o is a graph vertex o € V and connected by
edges (0,p) € E to other nodes p € V in the graph structure.
The edges are undirected and unweighted.
(2) Each object o is described by a vector (o, ...,04) € R?
in a d-dimensional continuous data space where the attributes
are named A = {Aq,..., Aq}.

An outlier ranking is a sorted list of all o € V, in ascending
order of a scoring function:

score(o) : V. — R

The score represents a measure for the objects’ regularity, and
it considers both graph structure and attribute values. Outliers
have low scores, and regular objects have high scores.

As a pre-processing step we build upon subspace clustering
results obtained by different graph clustering algorithms. We
abstract from their individual properties and assume that a
clustering result is given as follows:

Definition 2: Subspace Clustering Result
A subspace clustering result in an attributed graph is a set
of subspace clusters Res = {(C4,571)...(Cp,Sn)}, where
C; C V is a densely connected subgraph with high attribute
similarity in the subspace S; C A.

Please note, that according to this definition, an object can be
part of multiple clusters in several subspaces. This hinders the
traditional detection of outliers (not assigned to any cluster),
as typically each object occurs in at least one subspace cluster
[25]. However, it provides us the means for a more enhanced
outlier scoring, which evaluates cluster assignment of each
object as an indication for its regularity.

B. Outlier Detection in Attributed Graphs

Outlier ranking in attributed graphs induces two main
challenges: the selection of subgraphs with their individual
subspaces and the scoring of objects in these multiple
subspaces. In the following, we discuss the main challenges
before presenting the GOutRank solution in detail.

Challenge 1:

Selection of subgraphs and subspaces



We deem the selection of subgraphs and subspaces the main
challenge for outlier ranking in attributed graphs. In graph
data, densely connected subgraphs stand for clusters with high
intra-cluster similarity. Many relations between these clustered
objects are a clear indicator for a homogeneous subgroup.
Considering the attributes of each clustered node, we observe
a correlation between the graph structure and some attribute
values. Hence, a group of clustered nodes may only show
high attribute similarity for a subset of relevant attributes.
As illustrated in Figure 1(b), some subspaces show high
correlation with the selected subgraph, while other attributes
may tend to be irrelevant for this subgraph and show scattered
attribute values.

As mentioned in Section II, recent techniques [21], [22],
[23] set about solving Challenge 1. These approaches can
detect subspace clusters in attributed graphs. We have
consciously decided to take their results as input to our
scoring functions in order to solve this first challenge. Our
approach will even improve with future developments in this
research area.

Challenge 2:

Scoring of objects in multiple subspace clusters

A naive outlier score would assign score(o) = 1 to all
objects that occur in at least one cluster and score(o) = 0
to all objects that are not clustered. However, current graph
clustering techniques in attributed graphs allow to obtain
multiple views of an object w.r.t. the graph structure and the
relevant subset of attributes. Such a function does not consider
that an object might belong to several subspace clusters,
and it misses thereby essential information about each object
given by its cluster assignments. This information should be
included for outlier ranking, and scoring should depend on the
occurrence of objects in different subspace clusters.

OutRank is the first solution, which tackles Challenge 2
for high dimensional vector data [10], [14]. However, using
the original OutRank score in case of attributed graphs is not
enough. It only considers the attribute properties of subspace
clusters. In Section IV, we will show that these properties
are not sufficient for high quality outlier ranking on attributed
graphs. Thus, the open challenge of outlier scoring on at-
tributed graphs is very similar to the one of subspace selection.
One has to consider both attribute and graph properties.
Ranking functions require a unified score that incorporates
all these properties in order to avoid loss of information. In
particular, one has to incorporate the centrality of each node,
its relevant attributes, and the objects it is clustered with.

C. Scoring based on Subgraphs and Subspaces

With GOutRank, we focus on Challenge 2 for both graph
and attribute information in the following. We first review
the solution presented in OutRank [10], [14]. Then, we
present how we extend the basic idea of OutRank to graph
information.

Definition 3: OutRank scoring

scorey(0) = % . Z 1l + iElR

C S
{(C,5)ERes | oeC} T max

with |C| being the number of objects in cluster C, and |S| the
number of attributes; ¢,,q, the maximal cluster size in Res
and $,,4, the maximal dimensionality in Res.

This function defines outliers as objects that are found in
abnormally few and low dimensional subspace clusters. Its
core idea is that regular objects tend to cluster with many
other similar objects. This is used as a first indication of the
regularity of objects. The dimensionality of clusters is used
as the second indication. Objects that are part of clusters with
many attributes have strong dependencies in several properties.
Hence, these regular objects get high scores. Please note, that
in general [10], [14] one can weight the individual terms in
the sum. For simplicity of presentation we skip this weighting
parameter and use an equal weighting for cluster size and
dimensionality.

This score generates high quality outlier rankings, as shown
for several benchmark databases for vector data in a recent
publication [12]. It has achieved higher quality results in com-
parison to several other outlier ranking techniques designed for
high dimensional data [9], [11].

However, for attributed graphs scorej(o) clearly misses
some graph properties. To overcome this drawback, GOutRank
defines two additional properties as indication for regular
objects. They both utilize the centrality of a node in the graph
structure.

First, we consider the local edge density to be a valuable
criterion for our scoring. We search for isolated nodes in a
strong connected graph structure. On the one hand, outliers
are characterized by their low edge density. While on the
other hand, highly connected subgraphs should be rated as
indication for regular objects. In our example, co-purchases
with many other products indicates the regularity of a product
as a central hub from which other products are purchased.
Outliers show only very few purchases and are clustered in
sparsely connected subgraphs. Furthermore, this criterion can
distinguish between nodes in multiple clusters with different
edge densities. Overall, highly connected subgraphs are rated
as better indication for regular objects than sparsely connected
graphs.

Definition 4: GOutRank with node degree scoring

1
scores(0) = 3 Z e + 5]

C S
{(C,S)ERes | oeC} M max

deg(o)
degmam

with deg(o) = |{(0,p) € E}| and 25L2L ¢ [0,1]

degmax

as the normalized edge degree of node o.

As second indication for regularity, we observe the
centrality measure obtained by the Eigenvalues [28]. This
measure has been used to immunize the most vulnerable



node in a graph (e.g., to make it as robust as possible against
a computer virus attack). It is based on a recent development
in terms of graph centrality and provides an interesting
indication for our regularity measure. The indicator is based
on the observation that central nodes such as hubs form the
core of the regular subgraph. Thus, high scores are assigned
to these nodes.

Definition 5: GOutRank with eigenvalue scoring

_1 1 1SI | |EV()
Score3(0) B Z Crmax + Smax |EV|maa:
{(C,S)ERes | 0oeC}
with W € [0, 1] the normalized eigenvalue of node o.

Clearly, there are further centrality measures that could be
used as instantiations of our model. We present only these
two as a mixture of a basic degree scoring and a recent graph
measure with eigenvalue scoring. Incorporating these basic
graph properties shows significant quality improvement in our
evaluation. But even more important, it highlights the potential
for future regularity criteria in this scoring framework.

Finally, let us discuss the effects of the scoring functions and
their intrinsic properties. They are designed as a conjunction of
different indicators. Clear outliers are not part of any cluster,
or they are part of clusters which only consist of nodes in very
small, low dimensional, and sparsely connected subgraphs. All
of these properties indicate a high deviation and lead to top
ranking positions. Intermediate positions in the ranking are
assigned to objects that show up in either large, high dimen-
sional, or densely connected subgraphs. Finally, clear regular
objects are clustered in large, high dimensional, and densely
connected subgraphs, and thus, will be ranked at the bottom.
For the graph-based components of scores and scores we
expect centrality measures to provide an enhanced distinction
between individual objects. In this respect, GOutRank can be
considered as a general framework. It enhance its detection
quality by novel developments in both centrality measures and
subspace clustering.

IV. EXPERIMENTS

In our empirical evaluation, we show the potential and
the capabilities of our GOutRank method on a real world
database. The dataset has been extracted from the Amazon
co-purchase network [29] and restricted to Disney DVDs (124
nodes with 334 edges). In addition to this graph structure,
we extracted further product information (e.g., product prices,
different rating ratios, product reviews) from the Amazon
website. Our attributed graph consists of 30 attributes per
node. The existing graph clusters correspond to similar Disney
films such as Disney Pixar Films or Disney classics. Product
O; from Figure 1(b) is one of the real world outliers that
corresponds to the overpriced film? The Jungle Book (1994) of
Rudyard Kipling’s hidden in the cluster of Read-Along Disney
films.

2http://www.amazon.com/dp/B00005T5YC

For our quality assessment we use a ground truth of real
outliers, which we obtained from a user experiment. Outliers
have been labeled by a class of high school students as domain
experts for the selected subgraph. We firstly obtain the graph
clusters with a modularity based technique [30]. Thus, we
have ensured that students do not simply label global outliers
(e.g., product with the highest price of the database). Each co-
purchased group was shown to the students as a product list,
and they had to label one or two items that they considered
deviating from the others in the group. For the ground truth
we have deemed all products outliers that have been labeled
as outlying by at least 50% of the students. Figure 1(a) shows
the entire Disney network.

The dataset and a detailed description is publicly available
on our website. It can be used as a benchmark database
for outlier mining on attributed graphs. To the best of our
knowledge it is the first attributed graph with a labeled outlier
ground truth. Obviously, it is only a small data set. However,
it is an interesting benchmark database due to its complex
graph and attribute structure. In this line, we hope to facilitate
comparability with future developments in this research area.

In our evaluation we compare GOutRank to the following
outlier ranking techniques: LOF (only attributes, without sub-
space analysis) [6], SOF and RPLOF (only attributes with
subspace analysis) [8], [9], SCAN (graph clustering that de-
tects structural outliers) [19], and CODA (graph and attribute
outlier mining, without subspace analysis) [24]. In addition,
we evaluate our approach with different graph clustering
approaches: CoPaM [21], GAMer [22] and an extension of
Cocain [31]. All of these clustering techniques are publicly
available [22].

A. Comparison to competing approaches

Figure 2 shows AUC (area under the ROC curve) measures
and the runtimes for all approaches. The loss of information is
clearly visible for both paradigms: (1) approaches using only
attributes and (2) approaches using only the graph structure.
For the first paradigm, we observe a higher quality of subspace
outlier mining [8], [9] compared to the full space method [6].
This is due to the selection of relevant attributes for each
individual outlier. However, they miss several outliers, hidden
in combination of both data types, due to the loss of graph
information. On the other hand, graph-based approaches [19],
[24] show very low AUC. Although CODA has both graph
and attribute information available, it fails due to the curse of
dimensionality in the full attribute space. Overall, GOutRank is
not as fast as the competing approaches. However, the runtimes
depend heavily on the used subspace clustering technique
(cf. Section IV-B) and GOutRank clearly outperforms all
competitors with a significant quality enhancement. It is able
to cope with both attribute and graph information and with
large numbers of given attributes. It is a successful synthesis
of both graph and attribute information with high quality due
to its outlier detection in selected subspaces.



Used data Paradigm Algorithm | AUC[%] | Runtime[ms]
(1) attribute data only full space outlier analysis LOF [6] 56.85 41
subspace outlier analysis SOF [3] 65.88 825
RPLOF [9] 62.50 7
(2) graph structure only graph clustering SCAN [19] 52.68 4
(3) both attributes and graph data | full space outlier analysis | CODA [24] 50.56 2596
subspace outlier analysis | GOutRank 86.86 26648

Fig. 2. AUC results for all competitors on the Amazon database [Disney DVD selection]

Graph Subspace Clustering Score Function AUC[%] | Runtime Pre-processing [ms] | Runtime Score [ms]
score; (only attributes) 75.28 0.20
GAMer [22] scores (node degree) 82.91 26648.60 0.16
scores (eigenvalue centrality) 86.86 0.25
score; (only attributes) 75.85 14.07
extension of Cocain [31] scoreg (node degree) 76.97 123948.10 16.91
scores (eigenvalue centrality) 77.96 16.00
score; (only attributes) 58.61 1.34
CoPaM [21] scorez (node degree) 69.49 1615.20 1.30
scores (eigenvalue centrality) 72.45 1.31

Fig. 3.

B. Including different clusterings and scores

GOutRank allows to use any subspace graph clustering as
pre-processing step. Thus, we compare GOutRank with the
different scoring functions and three clustering inputs [22],
[31], [21] in Figure 3. Regarding the different clustering
schemes, we observe best results for GAMer, the most re-
cent graph clustering approach based on subspace analysis.
GOutRank finds most of the hidden outliers due to its high
quality clustering. In comparison with score;, we observe a
clear benefit of the enhanced scoring functions scores and
scores, which take the centrality of the nodes into account.
Both other clustering approaches (i.e. the extension of Cocain
and CoPaM) have AUC values that are worse. In all cases
scorez and scores can improve over the traditional scoring
of OutRank. Figure 3 shows also the runtimes of the pre-
processing step and the calculation of each of the scores. In
all cases, the overhead for scoring is negligible in comparison
to the runtime of the subspace clustering algorithms.

Overall, our experiments show that GOutRank with scores
performs best. The results also highlight the high outlier rank-
ing quality of GOutRank for the most recent graph clustering
technique. This indicates that improving the graph clustering
techniques can lead to an increased outlier detection quality
of GOutRank.

V. CONCLUSIONS

With GOutRank we have proposed a first solution for outlier
ranking in subspaces of attributed graphs. Graph nodes are
ranked according to their outlierness regarding both graph and
attribute properties. We build upon graph clustering and sub-
space analysis as pre-processing steps to our outlier scoring.
Both contribute to the high quality result in our evaluation. In
all other cases we observe a significant decrease of the AUC
values due to information loss w.r.t. graph data, or because
there is no subspace analysis. We have made similar observa-
tions for our outlier scoring functions. They capture outlierness

Quality w.r.t. different graph clustering techniques and scoring functions

w.r.t. both subgraphs and subspaces. They are able to detect
high quality outliers in attributed graphs. Our evaluation with
the Amazon network proposes the first benchmark for outlier
mining in attributed graphs and highlights that GOutRank has
assigned high ranking positions to most of the user-labeled
outliers.

VI. OPEN CHALLENGES AND FUTURE WORK

Our future work in this area will focus on several open
challenges. In the following, we describe the most promising
ones, which have been derived out of our case study on the
Amazon network.

Open Challenge 1:

Integration of outlier ranking
into graph clustering algorithms

As first open challenge, we see high potential in the
integration of outlier ranking into the actual graph clustering
process. This would allow an interactive exploration of
outliers during the cluster computation. Top-k results could
be computed directly out of the clustering task without
computing scores for all objects in the database as a post-
processing.

Open Challenge 2:

Scalable computation of outlier rankings
in large attributed graphs

Our current two step processing has clear drawbacks w.r.t.
scalability. It has to mine all subspace clusters first, before
computing scores for each object in a second step. Integration
of these two steps might lead to first efficiency improvements.
However, further heuristics and approximations will be
required to reduce the complexity in main bottlenecks such
as subspace selection and complex scoring functions.



Open Challenge 3:
Scoring by comparison of graph clusters

As third open challenge, we observe the comparison of the
obtained graph clusters. In the current solution, each cluster
is considered individually in the scoring function. However,
new indicators for outliers might be derived if one compares
two clusters. In particular, one could exploit the redundancy
of clusters (i.e. the coverage of objects in multiple clusters)
to refine the indicators.

Open Challenge 4:
Incorporating more complex clustering models

Complex clustering models could be considered in order to
exploit the hierarchical embedding of graph clusters for novel
indicators. Hierarchies are of interest in many real world
applications where clusters do not form a flat partitioning but
a hierarchy of clusters that include each other. In particular,
we observe the overlap of clusters to capture a high potential
for future scoring functions. Overlap of clusters occurs
in hierarchical clusterings, but also in recent multi-view
clustering that searches for clusters in multiple perspectives
of the database [32].

Open Challenge 5:

Enhanced graph measures and subspace selections for
each individual node

Finally, we observe an open challenge in the extraction of
further node properties as indicators for our scoring. There
is a variety of centrality measures available that could be
used for the structural outlierness of a node. However, we
see even more potential in enhanced selection methods for
individual subspaces. Current clustering techniques compute
one subspace for the entire cluster. Individual sets of attributes
for each node might provide even better outlier scores.

Overall, there are several directions that have been opened
by the basic idea of GOutRank for future research. We are
looking forward to exploit this potential for future improve-
ments in graph outlier ranking.
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